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1 Introduction
Experimental mathematics is not a specific field of math, but an approach which can be used to
research various areas of math. My research focuses on the application of experimental mathematics
to a number of problems, demonstrating its methodology, which is described in Section 2 below. In
particular, I have worked on problems in combinatorics, with a focus on Dyck and Motzkin paths.
In Section 3, I describe my research on Dyck paths, Motzkin paths, and similar paths. These
projects include enumerating restricted Dyck paths (see [5]), enumerating restricted Motzkin paths
(see [3]), and studying the area under generalized Dyck paths (see [4] and [6]). In Section 4, I
describe my paper on the Groebner bases of ideals generated by elementary symmetric functions
(see [2]).

Programming and developing algorithms are important tools in generating ideas and tackling
potential problems. In general, as I pursue other topics, I plan to continue to develop efficient
algorithms and symbolic programming to aid in my research, thereby aiding further investigations
and contributing to computer algebra. Both computer algebra and discrete math are fundamen-
tal in mathematics, cryptography, science, and technology, including computer technology and
the internet. Beyond concrete outcomes, this work will contribute to the collaboration between
mathematicians and computers. While mathematical investigation is traditionally done by hand,
the methodology of experimental mathematics has shown itself to be invaluable. Computers can
provide mathematicians with a vast amount of data used to form new conjectures, which would
be extremely tedious – if not impossible – to obtain by hand. As computers become increasingly
powerful and allow more flexibility in programming, mathematicians need to adapt and develop
new research methods. By designing algorithms, mathematicians can "teach" computers to form
and rigorously prove conjectures, unlocking their untapped potential in furthering mathematical
studies.

2 The Methodology: Experimental Mathematics
In the most general sense, experimental mathematics is the methodology of using computation and
algorithms to study mathematical objects, typically involving computer-assisted proving. One form
involves using a computer to investigate mathematical objects and then using this data to form con-
jectures on their general properties, which are easier to prove a posteriori. Here, a mathematician
may write a code to generate sufficiently many examples, study these examples, and identify (or
even program the computer to guess) patterns among them. I use this approach in my joint paper
with Robert Dougherty-Bliss, "Enumerating Dyck Paths with Context-Free Grammars," [5] and
my paper "A Combinatorial Approach to the Groebner Bases for Ideals Generated by Elementary
Symmetric Functions" [2].

Alternatively, if the mathematician already has a conjecture, they can program the computer to
either prove or disprove it. For example, say the mathematician can prove that, if a counterexample
exists, then the minimal counterexample must have a given form. The computer can then either
show that such a minimal counterexample cannot exist – which is famously done in the Appel-Haken
proof of the Four Color Theorem [1] – or find a counterexample.
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Finally, the mathematician may program the computer to automatically form and prove a
conjecture. In the code, the mathematician provides the general form of the desired solution and
outline of the proof. The computer can then try to identify patterns and form rigorous proofs
by following the outline provided by the mathematician. For example, the mathematician may
translate certain properties of a mathematical object into a system of polynomial equations. Such
polynomials generate an ideal. Since any basis will give the same set of solutions, it can be
advantageous to change basis. To form and prove conjectures, the computer may for instance use
Buchberger’s algorithm to compute a Groebner basis, making it easier to manipulate and solve
the system of equations. This approach is used in the papers “Automated Counting of Restricted
Motzkin Paths” [3] and "Using Symbolic Computation to Explore Generalized Dyck Paths and
Their Areas" [6].

2.1 Developing Algorithms and Programming using Groebner bases

Multiple Maple packages that I have written have implemented Buchberger’s algorithm and Groeb-
ner bases to form and prove conjectures. Designing such algorithms that use Groebner bases for
efficient computations is a key problem in computer algebra. For potential readers unfamiliar with
Groebner bases, I will briefly elaborate on their general use in proofs.

Definition 1. A Groebner basis of an ideal I ⊂ k[x1, ..., xn] (with respect to a monomial order >)
is a finite subset G = {g1, ..., gt} of I such that, for every nonzero polynomial f in I, f is divisible
by the leading term of gi for some i.

Definition 2. A Groebner basis G is reduced if, for every element g ∈ G,
1. the leading coefficient of g is 1, and
2. no monomial in g is in ⟨LT (G − g)⟩, the ideal generated by the leading terms of the other

elements in G.

It is known that every nonzero polynomial ideal I has a unique reduced Groebner basis. In
general, the Groebner basis makes it easier to interpret the properties and structure of the ideal.
It simplifies solving the ideal membership problem and finding solutions to a system of polynomial
equations. A polynomial f lies in the ideal I ⊂ k[x1, ..., xn] with Groebner basis G if and only if
the remainder on division of f by G is zero.

In forming conjectures, however, our problems will not already be stated as polynomials. By
letting variables represent certain properties, we can translate various structures into polynomials,
as was done in MotzkinClever.txt, the Maple package that I wrote to accompany [3]. Thus, if we
let I be the ideal generated by the polynomials describing the properties of the given object, and f
be the polynomial representing some claim about the mathematical object, then this claim is true
if and only if f is in I. Therefore, the computer can prove or disprove the claim algorithmically,
using Buchberger’s algorithm to find a Groebner basis and then applying the division algorithm.
A more in depth explanation of the Groebner basis method as well as examples can be found in
[10] and [11].

3 Research on Dyck, Motzkin, and Similar Paths

3.1 Enumerating Restricted Dyck Paths Using Context-Free Grammars

In my joint paper with Dougherty-Bliss [5], we used Zeilberger’s package DyckClever.txt from [7]
to find the bivariate polynomial F (x, P ) such that F (x, f(x)) = 0, where f(x) is the generating
function for the sequence enumerating Dyck paths with given sets of restrictions.
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Definition 3. A Dyck path of semi-length n is a walk in the xy−plane from the origin (0, 0) to
(2n, 0), consisting of n up-steps U := (1, 1) and n down-steps D := (1, −1), that never goes below
the x−axis.

The restrictions considered in both the maple package and my joint paper are defined as follows.

Definition 4. A peak on a Dyck path is the bigram UD. The height of this peak is given by the
y−coordinate of the Dyck path after the step U .

Definition 5. A valley on a Dyck path is the bigram DU , and its height is given by the y−coordinate
after the step D.

Definition 6. A Dyck path has an upward-run of length n if there are n consecutive up-steps that
are not directly followed by nor directly follow an up-step.

Definition 7. A Dyck path has a downward-run of length n if there are n consecutive down-steps
that are not directly followed by nor directly follow a down-step.

Let A, B, C, and D be arbitrary sets of positive integers – either finite sets, infinite sets defined
by arithmetical progressions, or the finite union of such sets. DyckClever.txt includes algorithms
which directly compute the equation satisfied by the generating function for the sequence of the
number of Dyck paths which avoid the following:

• peak heights in A,

• valley heights in B,

• upward-runs with lengths in C, and

• downward-runs with lengths in D.

In doing so, the procedures supply algebraic proofs of these identities.
While these algorithms can furnish the desired equations satisfied by the generating functions

for given sets A, B, C, and D, they cannot produce identities for infinite families, or arbitrary sets of
a given form. For example, running the appropriate procedure delivers the desired equation for the
sequence of Dyck paths avoiding upward-runs of length ar+b for given non-negative integers a and b
(e.g. 5r+2), where r is a variable ranging over the non-negative integers. By running the procedure
for various values a and b, I was able to extend these findings and form conjectures on the infinite
family of Dyck paths avoiding upward-runs of length ar+b for arbitrary non-negative integers a and
b. Using this approach, I formed conjectures on other infinite families of restricted Dyck paths. In
"Enumerating Dyck Paths with Context-Free Grammars," I present these identities and prove that
certain infinite families have an explicit context-free grammar which yields the equation satisfied
by the generation function [5]. In doing so, I use recursive rules to show that any path with such
restrictions can be rewritten in one of finitely many forms concatenating certain steps with other
paths in a specific order. Using the principle of inclusion-exclusion, I resolve any issues of over-
counting or unwanted generated paths. "Grammatical proofs" or "proving grammatically" refer to
such proofs. These grammatical proofs yield a lot of insight by providing structural information
about the restricted Dyck paths not given by the computer-automated, algebraic proofs.
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3.2 Enumerating Restricted Motzkin Paths

In my paper [3], I generalized Zeilberger’s method for automatic counting of restricted Dyck paths
[7] to the Motzkin paths.

Definition 8. A Motzkin path of length n is a walk in the xy−plane from the origin (0, 0) to (n, 0)
with atomic steps U := (1, 1), D := (1, −1), and F := (1, 0) that never goes below the x−axis.

Definition 9. A peak on a Motzkin path is the sequence of steps UF kD for k ≥ 0, where F k

denotes k consecutive F steps. The height of this peak is given by the y−coordinate of the Motzkin
path after the step U .

Definition 10. A valley on a Motzkin path is the sequence of steps DF kU for k ≥ 0. Its height
is given by the y−coordinate after the step D.

Definition 11. Upward-runs and downward-runs are defined the same way as in Dyck paths.
Similarly, we say that a Motzkin path has a flat-run of length n if there are n consecutive

flat-steps F that are not directly followed by nor directly follow a flat-step.

Let A, B, C, D, and E be arbitrary sets of positive integers – either finite sets, infinite sets defined
by arithmetical progressions, or the union of such sets. I wrote Maple packages Motzkin.txt and
MotzkinClever.txt, which include programs which find the polynomial F (x, P ) that is zero when
P is set as the generating function for the sequence counting Motzkin paths of length n avoiding:

• peak heights in A,

• valley heights in B,

• upward-runs with lengths in C,

• downward-runs with lengths in D, and

• flat-runs with lengths in E.

Motzkin.txt uses numeric dynamic programming to generate sufficiently many terms of the se-
quence enumerating Motzkin paths with the desired restrictions, and then guesses the recurrence.
MotzkinClever.txt generates a finite system of algebraic equations by using symbolic dynamic
programming and then solves the system to get the algebraic equation satisfied by the generating
function directly. More specifically, I express recurrences for restricted Motzkin paths as polyno-
mials by translating each set of restrictions into a distinct variable. Then, the procedure efficiently
finds the reduced Groebner basis to get the desired equation for the sequence of Motzkin paths
with that set of restrictions.

Both Dyck paths and Motzkin paths have a specific set of atomic steps: {(1, 1), (1, −1)} and
{(1, 1), (1, 0), (1, −1)}, respectively. For future study, we can extend my findings on Dyck and
Motzkin paths to similar paths which allow an arbitrary set of atomic steps. We can try to do this
by following the same approach as I used with Motzkin paths: identify recursive relations for the
set of possible paths and then find an equality solved by the generating function for the number of
such paths of length n. While the same approach should work, finding and justifying the necessary
recursive relations is very non-trivial. Afterwards, we can experiment with various sets of steps to
form conjectures on infinite families, which we will then work to prove.
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3.3 The Area Under Generalized Dyck Paths

The bivariate weight enumerator for Motzkin paths with length n and area m satisfies the following
functional equation

M(x, q) = 1 + xM(x, q) + x2qM(qx, q)M(x, q).
Definition 12. Generalized Dyck paths are walks on the xy−plane from the origin (0, 0) to (n, 0)
with an arbitrary set of atomic steps and that never go below the x−axis.

In my joint paper [6] with Doron Zeilberger, we use symbolic dynamical programming to auto-
matically generate algebraic equations satisfied by the generating functions enumerating generalized
Dyck paths. Using calculus, we can then compute generating functions for the sum of the areas
under such paths as well as sum of a given power of the areas. These methods are fully automated
in the accompanying Maple package GDW.txt.

In the paper [4] , I demonstrate how to use dynamical programming to find the weight enumer-
ator for the area paths of length n with steps in a given set S that start and end at height 0 and
never have negative height. I also describe how to find the weight enumerator for such paths when,
instead of a set of steps S, we are given bivariate polynomials P (x, q), Q(x, q), and R(x, q) such
that the weight enumerator f(x, q) satisfies

f(x, q) = P (x, q) + Q(x, q)f(x, q) + R(x, q)f(x, q)f(xq, q).

I then present a method for finding f (k)(x, 1) := dk

dqk
[f(x, q)]

∣∣
q=1. Rather than outputting algebraic

equations as seen in [6], this procedure produces closed-form expressions in terms of radicals.
These methods are fully automated in the accompanying Maple package qEW.txt, displaying

how the power of computer algebra and using calculus allows us to generate quite a few moments.
In the paper, I demonstrate these methods with the bivariate weight enumerators for both Motzkin
paths and Dyck paths with length n and area m. Moreover, I show how these procedures can be
used to produce the Maclaurin series of dk

dqk [f(x, q)]
∣∣
q=1, allowing us to find the generating function

for the total area under such paths of length n as well as for the sum of a given power of the areas.
For further study, we can use the methods in both papers to study the statistical information

about the area under a random generalized Dyck path. Given a family of paths, let a0(n) be the
number of such paths of length n, a1(n) be the total area under such paths of length n, and a2(n)
be the sum of the squares of the areas under such paths of length n. Using the accompanying
Maple package qEW.txt, we can generate 10,000 (or more) terms of the sequences of the average

areas
{

a1(n)
a0(n)

}
and the variances

{
a2(n)
a0(n) −

(
a1(n)
a0(n)

)2}
and use numerics for the asymptotics.

4 Groebner Bases for Ideals Generated by Elementary Symmetric
Functions

In [9], Mora and Sala provide the reduced Groebner basis of the ideal formed by the elementary
symmetric polynomials in n variables of degrees k = 1, . . . , n, ⟨e1,n(x), . . . , en,n(x)⟩ [9]. Haglund,
Rhoades, and Shimonozo expand upon this, finding the reduced Groebner basis of the ideal of
elementary symmetric polynomials in n variables of degree d for d = n − k + 1, . . . , n for k ≤ n [8].
Definition 13. Let k and n be natural numbers. The elementary symmetric polynomial of degree
k in n variables x1, . . . , xn is

ek,n(x) =
∑

1≤i1<···<ik≤n

xi1 . . . xik
.
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Definition 14. The homogeneous symmetric polynomial of degree k in n variables
x1, . . . , xn is

hk,n(x) =
∑

1≤i1≤···≤ik≤n

xi1 . . . xik
.

Mora and Sala prove that {h1,n(x), h2,n−1(x), . . . , hn,1(x)} is a Groebner basis of the ideal
⟨e1,n(x), . . . , en,n(x)⟩ [9]. In my paper [2], I use the accompanying Maple package that I wrote
with Doron Zeilberger, Solomon.txt, to efficiently generate the reduced Groebner bases of many
specific ideals using symbolic computation and extend their findings. I first use experimental
methods to deduce a pattern for the reduced Groebner bases of the ideals ⟨e1,n(x), . . . , ek,n(x)⟩ and
⟨e1,n(x), ek,n(x)⟩ for arbitrary k ≤ n, and prove them by combinatorial means. I then investigate
other cases to expand upon my results to the ideal ⟨ek1,n(x), . . . , ekm,n(x)⟩. I find a basis for this
general case, proving that it generates the ideal, and show empirically that it is a Groebner basis.

One direction for further research is to formally prove that the basis we have found for the
general case is the reduced Groebner basis. We can also try to find similar identities for other
ideals, such as those generated by various power sum symmetric polynomials or homogeneous
symmetric polynomials of arbitrary degrees.
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